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Abstract 
 

COMPARING THE EFFECTIVENESS OF DIURNAL ROCK-LIFTING AND NOCTURNAL 
DIVE-LIGHTING SURVEYS FOR EASTERN HELLBENDERS 

 
Freddy Junior Ortega 

B.S., Appalachian State University 
M.S., Appalachian State University 

 
 

Chairperson: Michael M. Gangloff 
 
 

Studies designed to better understand perceived hellbender population declines typically 

use diurnal rock-lifting surveys to detect individuals. However, these methods are invasive as 

they may alter sheltering or breeding habitat or result in injuries to hellbenders and surveyors. 

Further, diurnal surveys omit bedrock and large boulders that cannot be lifted. Between the 

months of June and August, 2019, I compared the number of detections and catch per unit effort 

(CPUE) of nocturnal snorkel surveys, followed by traditional diurnal rock-lifting surveys across 

11 sites within the New, Watauga and Nolichucky river drainages in Western North Carolina. An 

additional late August - late September pass was conducted to reveal any breeding period effect 

on nocturnal detection rates. Wilcoxon signed-rank revealed that number of animals detected did 

not vary with method (diurnal to nocturnal summer: (Z = 37, df = 10, P = 0.08); nocturnal 

summer to nocturnal breeding: (Z = 9, df = 7, P = 0.68). Detections increased in 63% of sites 

during nocturnal surveys in both summer and breeding nocturnal surveys when compared to 

diurnal rock-lifting surveys. Paired t-tests comparison of hellbender catches across three survey 
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treatments revealed that CPUE was statistically higher in the nocturnal summer treatment (t = 

2.69, df = 9, P = 0.025); this difference was not observed between nocturnal-summer and 

nocturnal-breeding surveys (t = - 0.95, df = 7, P = 0.37). During nocturnal snorkel surveys, 

CPUE increased in 82% and 88% of sites for early summer and late summer treatments with 

26% and 13% of detections being individuals sheltering in bedrock crevices during early summer 

and late summer nocturnal surveys respectively. Contrastingly, during early summer diurnal 

surveys, all detections were from beneath boulder substrate. By targeting the period of highest 

presumed activity in these cryptic salamanders, I was able to obtain more representative 

enumeration estimates of populations size likely because detection probabilities were equal or 

higher at most sites. These results suggest that both methods are similarly effective at detecting 

hellbenders. However, nocturnal surveys have the advantage of minimizing microhabitat impacts 

and are more efficient in terms of search effort. Additionally, non-invasive sampling can also be 

used to conduct surveys during the breeding season when nesting animals would presumably be 

more sensitive to disturbance associated with rock-lifting.  

Key Words.―amphibians; hellbender; nocturnal; survey methods; rock-lifting; monitoring 

Short Title. ―Comparing diurnal and nocturnal surveys for Eastern Hellbenders  
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Introduction 

 
Global assessment of amphibians has shown that amphibian declines and threats are occurring at 

alarming rates and many declines remain largely misunderstood (Pechmann et al. 1991; Stuart et 

al. 2004). Habitat loss and overutilization have been tied to 52% of global declines, however the 

remainder fall under a wide array of potential threats including the fungal disease 

chytridiomycosis (Berger et al. 1998; Lips et al. 2003), Ranavirus (Kik et al. 2011; Souza et al. 

2012), anthropogenic habitat disturbance (Unger et al. 2017), overexploitation (Nickerson and 

Briggler 2007). Given the broad range of potential threats to amphibian populations, it has 

become increasingly important to develop methods to effectively and efficiently monitor 

populations over an extended period of time in order to distinguish natural population 

fluctuations from legitimate changes in abundances (Pechmann et al. 1991). Also, it is important 

to assess the effectiveness of survey methods for innate limitations mediated by behavior and the 

habitat use of target species (Pechmann et al. 1991; Hyde and Simons 2001) and possible 

negative effects including the spread of pathogens and trauma to individuals during capture 

(Browne et al. 2011; Franklin 2016). 

The Eastern Hellbender (Cryptobranchus alleganiensis alleganiensis) is a large, cryptic 

aquatic salamander that can reach a total length of ~74 cm (Nickerson and Mays 1973). 

Hellbenders occur in cool-water, swift-flowing, and well-oxygenated streams with ample lithic 

substrate heterogeneity (Nickerson and Mays 1973; Fobes 1995; Pugh 2013). Eastern 

Hellbenders are widely-dispersed across the Ohio and Missouri river basins, however, they are 

believed to be declining across this range, likely due to anthropogenic habitat modification and 

land-use change (Wheeler et al. 2003; Quinn et al. 2013; Pugh et al. 2016; Pitt et al. 2017). The 

Ozark Hellbender (C. alleganiensis bishopi), an endemic subspecies, is listed as endangered 



 

2 
 

under the U.S. Endangered Species Act (USFWS 2011) and USFWS has been petitioned to list 

the Eastern Hellbender multiple times during the last two decades (USFWS 2001; USFWS 2010; 

USFWS 2019).  

Conservation biologists and resource managers have conducted an array of studies 

designed to determine presence-absence, quantify abundance and demography or examine 

genetic connectivity to understand the mechanisms driving hellbender population declines 

(Briggler et al. 2007; Unger et al. 2013; Franklin 2016; Pugh et al. 2016; Wineland et al. 2019). 

Because activity rates are highly variable among amphibian taxa, it is important to understand 

fundamental aspects of an organism’s behavior when designing abundance or occupancy-based 

surveys (Pechmann et al. 1991; Humphries and Pauley 2000; Buderman and Liebgold 2012; 

Spear et al. 2015; Murphy et al. 2016). Variability in behavioral traits influence population 

estimates, and survey methodologies that account for these differences can be used to improve 

detection rates. In Red-backed Salamanders, scotoperiod and its effect on diel activity patterns, 

has been found to influence detection rates (Buderman and Liebgold 2012). Hellbenders are 

considered to be nocturnally-active salamanders, however surface-active individuals have been 

observed during the middle of the day (Noeske and Nickerson 1979). Although these trends have 

not been well-studied, a range of observations appear to suggest that diel activity varies on a 

seasonal basis (Nickerson and Mays 1973; Nickerson and Tohulka 1986; Humphries 2007; 

Takahashi et al. 2018; Michael Gangloff pers. obs.; Worth Pugh pers. obs.). Japanese Giant 

Salamanders (Andrias japonicus) exhibit strong breeding/nest site defense with bouts of intense 

intraspecific combat and cannibalism documented among breeding males (Kawamichi and Ueda 

1998). Nocturnal surveys are also more efficient at capturing terrestrial salamanders (family 

Plethodontidae) compared with both artificial cover boards and leaf litter searches (Hyde and 
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Simons, 2001). Nocturnal searches for Red-backed Salamanders (Plethodon cinereus) 

consistently had higher initial encounter probabilities compared to daytime searches (Buderman 

and Liebgold 2012). It is possible that salamanders occupying cover objects during the day are 

exhibiting territorial behavior whereas surface counts represent all foraging individuals (i.e., 

counts include both territorial and non-territorial animals) (Jaeger 1979; Mathis 1990; Mathis 

1991; Jaeger et al. 1995). Thus, targeting the period of peak hellbender activity may provide a 

more accurate estimate of population sizes as nocturnal searches are less likely to be biased by 

substrate composition and territorial behaviors. 

Traditional hellbender studies have used diurnal snorkel/rock-lifting surveys to detect 

animals in water with up to a 1 m depth (Nickerson and Krysko 2003; Browne et al. 2011). 

However, despite widespread use of this technique, researchers have recently raised concerns 

about rock-lifting surveys (Browne et al. 2011; Santas et al. 2013; Franklin 2016). Main 

concerns revolve around rock-lifting altering hellbender habitats and causing injury to animals if 

rocks are dropped (Browne et al. 2011; Santas et al. 2013; Franklin 2016). Additionally, lifting 

large boulders is both effort intensive and hazardous to investigators and hellbenders commonly 

escape capture when large clouds of sediment become suspended in the moments following a 

rock-lifting event (Browne et al. 2011; Franklin 2016). In previous reports the maximum activity 

of hellbenders was reported to occur ~2 hours after sunset (Noeske and Nickerson 1979). Blais 

(1996) investigated nighttime activity of hellbenders in south-central New York but reported 

very low amounts of nocturnal activity, seemingly contradicting similar studies in the Allegheny 

River (e.g., Swanson 1948).  

Seasonal changes in hellbender behavior including surface activity, sheltering rates and 

feeding strategies at night remain unknown, likely because diurnal rock turning techniques do 
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not overlap with periods of nocturnal, or breeding activity (Smith 1907; Green 1934; Bishop 

1941; Nickerson and Mays 1973; Browne et al. 2011; Pugh et al. 2018). In West Virginia, 

Humphries and Pauley (2000) conducted repeated surveys for hellbenders within a 215 x 20 m 

by wading with spotlights. Between May and October 1998, they captured 59 individuals, with 

12 detections of sheltering individuals, and observations of as many as 10 individuals sheltering 

and/or active on the streambed on some nights. Hellbender surface activity decreased and 

sheltering rates increased over the course of summer and into the breeding period, and this result 

is contrary to prior reports of increased surface activity during the breeding season (Smith 1907; 

Green 1934; Bishop 1941; Humphries and Pauley 2000). However, it remains unclear whether 

the hellbenders in this study were changing their sheltering behavior in response to seasonal life 

history cues (i.e. increased breeding season territoriality), or to the frequency (every 2 weeks) of 

surveys. Additionally, because individuals were not marked, detection probability remained 

unknown. Despite this study’s limitations, Humphries and Pauley (2000) did provide evidence 

that nocturnal surveys can yield hellbender detection rates that are comparable to those of 

daytime rock-lifting surveys (Pugh et al. 2016, Pugh et al. 2018).  

To date, no prior studies have directly compared the effectiveness of diurnal and 

nocturnal hellbender surveys. Indeed, only a few studies have attempted to quantify seasonal 

changes in hellbender activity periods (Humphries and Pauley 2000; Humphries 2007). 

Nocturnal surveys have been shown to be broadly effective for detecting other cryptobranchid 

salamanders. Nocturnal spotlighting is the most common survey method employed to detect 

populations of the Japanese and Chinese (Andrias davidianus) Giant Salamanders and is often 

used independently or in conjunction with diurnal rock-lifting (Kawamichi and Ueda 1998; 

Wang et al. 2004; Okada et al. 2008; Browne et al. 2011; Takahashi et al. 2016). Here, I test the 
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hypothesis that a survey method targeting the period of increased surface activity in hellbenders 

can provide estimates of hellbenders abundance that are equivalent to those obtained from 

diurnal rock-lifting surveys. I predict that nocturnal survey methods will provide similar 

estimates but the effectiveness of this approach may be influenced by habitat conditions. 

Additionally, by conducting nocturnal dive-lighting surveys across two seasons, I tested the 

hypothesis that season influences detection of hellbenders. Because hellbenders tend to begin 

exhibiting pre-breeding behaviors (e.g., increased levels of territoriality and male-male combat) 

beginning in August 15 and continuing through early autumn (Lori Williams pers. obs.; 

Humphries 2007; Spear et al. 2015). I predict that hellbender detections and CPUE will increase 

during late summer and early autumn surveys.  

 

Materials and Methods 

Hellbender surveys 

I selected 11 study sites for surveys within the New, Watauga and Nolichucky river drainages in 

western North Carolina based on results of previous hellbender surveys (e.g., Pugh 2013; 

Franklin 2016; Pugh et al. 2018; Yaun 2019; Gangloff et al. unpubl. data). I conducted an initial 

round of mid-summer surveys between 14 June 2019 and 10 August 2019. First, I used nocturnal 

surveys aided by dive lights and then 1-6 days later, I surveyed the same reach using the 

traditional diurnal rock-lifting method. Finally, I conducted a second nocturnal pass at eight sites 

between 23 August and 29 September to reveal any breeding period effect on nocturnal detection 

rates. Due to logistical constraints (i.e. time, weather, crew availability etc.), nocturnal breeding 

period surveys did not follow the same order as those conducted during the summer and passes 

ranged from 32 to 84 days apart (Table. 1).   
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I used the spatially constrained transect-based survey method described by Pugh et al. 

(2018) to maintain a standardized protocol to compare data across space and time. For each site, 

I surveyed a 150-m stream reach divided into 15 cross-channel transects spaced 10-m apart. 

Snorkelers proceeded in an upstream direction and survey teams of two to five searchers (with 

the exception of one survey that involved 25 searchers) completely searched each transect. To 

minimize disruption of substrates and natural behavioral patterns, I first conducted nocturnal 

surveys and then returned to the site, typically within 1-2 days (site 6 was sampled five days 

apart) to conduct diurnal surveys. This minimized both habitat disturbance and the effects of 

spacing out surveys over the course of a summer field season (i.e., seasonal effects). 

During both nocturnal and diurnal surveys, snorkelers moved in an upstream direction 

searching the streambed for active hellbenders and examining the spaces beneath boulders and 

bedrock for sheltering hellbenders (Nickerson and Krysko 2003). I quantified search time, 

number of searchers, and number of hellbender detections/captures separately for each transect. I 

calculated catch per unit effort (CPUE) to account for variation in effort (time and number of 

individuals searching) for each survey. During nocturnal surveys, snorkelers used Underwater 

Kinetics SL4 ELED (Model MK2 600 Lumen) dive lights and 3AAA Vizion Z3 (210 Lumens) 

Herculite headlamps to observe both individuals that were sheltering and those active on the 

streambed. I only captured or attempted to capture hellbenders that were active on the streambed. 

I marked shelter rocks and/or position of capture of all individuals by deploying a numbered 

glow marker. I constructed glow markers of bright orange duct tape with two 4.5 cm round steel 

washers at one end, and a 10.2 cm glow stick attached to the other end. I recorded the location of 

all captured hellbenders and hellbender shelter rocks using a Bad Elf GNSS Surveyor Bluetooth 

GPS unit (Bad Elf, LLC).  
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During daytime surveys, researchers searched for juvenile/larval hellbenders beneath 

cobble (64-256 mm), boulder (>256 mm) and bedrock substrates. I used log-peaveys to lift 

boulders coupled with placing dip-nets directly downstream of cobbles and boulders to capture 

larger hellbenders (Gordon et al., 2004). Dip-nets were placed directly downstream of cobbles 

and boulders to reduce escapement. For all captured hellbenders (night and day), I recorded the 

following morphological measurements: total length (TL), snout-vent length (SVL), tail width 

(TW), weight, and any abnormalities (i.e. missing limbs, scars etc.). Sex was not discernable as 

no captures were made during the breeding period when swollen cloacae could be observed 

(Nickerson and Mays, 1973). Additionally, I used a Marsh McBirney Flo-Mate model 2000 to 

measure flow at the upstream end of each occupied shelter object. At each occupied shelter 

object, I also recorded: water depth (highest point of rock), rock length (RL), and rock width 

(RW). After processing, I measured depth and mid-channel flow velocity at five equi-distant 

points across the stream channel using a Marsh McBirney Flo-Mate model 2000 and a meter 

stick. At each locality at which hellbenders were encountered, depth (top of rock or stream bed), 

flow (immediately upstream of location), and rock length was recorded. Finally, I returned 

hellbenders to their respective cover objects or their approximate point of capture in the study 

reach.  

 

Statistical Analysis 

I compared the numbers of detections between diurnal and nocturnal surveys during the summer, 

and between nocturnal-summer and nocturnal-breeding treatments using a Wilcoxon signed-rank 

test because the distribution of detections was not normal for these data. CPUE data were 

compared using a paired sample t-test however. I also excluded a site in New River State Park 
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(Site 7) because this site was sampled as part of a larger inventory effort. At this site, 25 

searchers located only two hellbenders and generated an artificially-low CPUE of 0.04. I used 

IBM SPSS Statistical Software 26 to analyze data. 

 

Results 

Hellbender Detections 

During my 2019 summer and breeding period surveys, I detected a total of 122 hellbenders 

during 19 nocturnal dive-lighting surveys and 11 diurnal rock-lifting surveys. Diurnal (summer) 

surveys yielded 32 hellbender detections, all of which were from captures of individuals 

sheltering below boulder substrate that could be lifted (with one exception). I detected 43 

individuals using nocturnal-summer surveys. Of these, 29 (67.4%) were detected beneath 

boulders, and 11 (25.6%) were detected beneath bedrock. Only 3 (7%) hellbenders were 

observed to be exposed on the streambed and not sheltering beneath substrate. I detected 47 

hellbenders using nocturnal-breeding season surveys. Of these, I found 37 (78.7%) beneath 

boulders, 6 (12.8%) beneath bedrock, and 4 (8.5%) active on the streambed (Fig. 1). I did not 

detect any individuals during diurnal surveys at two sites that were occupied during nocturnal 

surveys (Site 6 in the Watauga and Site 8 in the Nolichucky River Drainage, Table 1).  

During summer surveys, detections increased in 7 of 11 sites during nocturnal surveys and 

CPUE increased in 8 out of 10 sites when compared to diurnal surveys (Fig. 3). During the 

nocturnal surveys in the breeding season, CPUE increased in 5 locations when compared to 

nocturnal summer surveys (Fig. 3). At two other sites, hellbender detections increased 

substantially during the breeding season: site 9 detections increased from 13 during the 
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nocturnal-summer to 22 during the nocturnal-breeding surveys and Site 11 nocturnal detections 

increased from 3 to 7 (Fig. 2).  

 

Comparisons Across Methods 

I found marginally significant increases in hellbender detections using nocturnal summer surveys 

compared to diurnal-summer surveys (Z = 37, df = 10, P = 0.08) (Fig. 4). However, contrary to 

findings by Humphries and Pauley (2000), I found no significant differences in summer versus 

breeding season hellbender detection rates using nocturnal methods (Z = 9, df = 7, P = 0.68) 

(Fig. 4). CPUE comparisons revealed that more animals were detected per survey effort during 

nocturnal versus diurnal methods in the summer (t = 2.69, df = 9, P = 0.025) (Fig. 4). There was 

no significant difference in CPUE when comparing nocturnal-summer and nocturnal-breeding 

surveys which further suggests that activity increases in the breeding season (t = - 0.95, df = 7, P 

= 0.37) (Fig. 5). Despite not finding statistical differences, we surpassed our summer season 

number of 43 detected hellbenders during the breeding season by 5 individuals, even with the 

omission of three sites. These increases can be attributed to spikes in Site 11 going from 3 to 7, 

and a very successful survey at Site 9 in which water levels were extremely low and 22 

hellbenders were detected (13 during the summer) (Fig. 2, Table 1).  

 

Discussion 

My data show that nocturnal surveys can detect hellbenders in comparable numbers to diurnal 

methods (Fig. 4). When effort (i.e., CPUE) was incorporated into the comparisons, I found that 

nocturnal dive-lighting methods were significantly more efficient in locating hellbenders than 

diurnal surveys (Fig. 5). A likely explanation for the increased efficiency of nocturnal surveys 
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lies in the fact that considerable time is invested by field teams in lifting shelter rocks. 

Additionally, during nocturnal surveys I had higher detection of hellbenders that were sheltering 

under large, unliftable boulders and bedrock shelves. In a study aimed at characterizing optimal 

release sites for Ozark Hellbenders, resource selection models indicated that bedrock provided 

important microhabitat in areas where coarse substrate, the most positively associated 

microhabitat type in resource utility models, was patchy (Bodinof et al. 2012b). Bodinof et al. 

(2012b) also noted that estimates of resource utility were substantially higher in sites with less 

continuous bedrock (i.e., bedrock with more crevices). Given that diurnal rock-lifting methods 

are limited by substrate that can be lifted, it is possible for investigators to locate hellbender nests 

beneath bedrock (Nickerson and Tohulka 1986). Bedrock has proven to be a challenging 

microhabitat in which to access hellbenders in the past (Bodinof 2010). Peterson (1988) and 

Nickerson and Tohulka (1986) used crowbars and steel bars to fracture bedrock to expose 

individuals and/or nests with mixed success. Bodinof et al. (2012a) followed translocated 

hellbenders and found an unequal detectability because of the researchers’ limited access to 

bedrock sheltering individuals. 

 During both the 2019 summer and breeding season, nocturnal surveys were more 

efficient than diurnal surveying for a variety of reasons. First, when lifting and searching large 

boulders, field teams of 3-5 searchers are required to safely and effectively lift large boulders as 

well as to help prevent escapement. Also, when an animal was located visually during nocturnal 

surveys, searchers were able to drop a marker, and almost immediately return to searching. 

These two reasons lead to uninterrupted sampling efforts in which much efficiency can be gained 

during the time of search (Fig. 3, Fig. 5) over diurnal rock lifting. Lastly, some substrates could 

not be lifted safely with log peaveys. During summer diurnal surveys the largest lithic substrate 



 

11 
 

(omitting outliers) was 1570 mm (Fig. 6), while during both nocturnal surveys the size of the 

largest occupied shelter rock was 3110 mm (Fig. 6). Nickerson et al. (2002) predicted the utility 

of nocturnal surveying in accessing hellbenders that sheltered under crevices and rocks that are 

too large to turn; I was able to confirm this in my study.   

 

Hellbender Behavior 

Of the 90 hellbender detections observed during nocturnal-summer and nocturnal-breeding 

surveys, only 7 individuals were active on the surface with an overwhelming majority observed 

sheltering beneath lithic substrate. In hellbenders, aggressive intraspecific combat between males 

has been widely-observed along with cutaneous abrasion, loss of limbs, and death, most 

frequently during the breeding season (Pfingsten 1990; Wheeler et al. 2002; Miller & Miller 

2005). Sheltering individuals were typically observed with only their heads protruding from 

beneath cover objects (Fig. 7). Minimal exposure by hellbenders reflects a territorial/nest defense 

behavior that has been observed both within and outside of the breeding period (Smith, 1907; 

Bishop, 1941; Hillis and Bellis 1971; Nickerson and Mays 1973). In populations of P. cinereus, 

territoriality in superior competitors is a way of guaranteeing exclusive access to certain 

resources, thereby increasing their fitness. Excluded individuals experienced lower fitness and 

were potentially failing to breed altogether (Mathis 1991). Similar exclusion behavior has been 

observed in hellbenders (Hillis and Bellis 1971) and male size can determine the outcome of 

bouts of intraspecific competition for breeding habitat in A. japonicus (Kawamichi and Ueda 

1998). Cover object size was correlated with temperature and moisture and the role of cover 

objects as predation refuges and prior residence under an object mediated cover selection.  
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Nocturnal spot-lighting observations of A. japonicus at nesting sites showed relatively 

sedentary behaviors during much of the year (Kawamichi and Ueda 1998). However, during the 

spawning period (late summer and early fall), large males referred to as ‘den masters’ were 

observed with their heads protruding from the entrances of desirable nest cavities, presumably in 

an effort to exclude other males. Males approaching the nest were frequently attacked and forced 

to fight the (often larger) male or flee (a behavior most commonly observed among smaller 

males). Den masters frequently left the nest to patrol the area and attack any males in the 

vicinity. These conflicts sometimes resulted in severe injury or mortality of individuals involved 

in territorial disputes. The aggressive intraspecific competition observed among A. japonicus in 

this study was largely constrained to the spawning season. During much of the remainder of my 

study, individuals had no reaction even when incidental physical contact between individuals 

sheltering in the same crevices occurred. Future behavioral studies could build on my 

observations and potentially address many questions regarding hellbender life history and 

behavior including: (1) How long does the spring period of surface activity extend? (2) When do 

breeding-associated aggressive behaviors begin? (3) How frequent are agonistic interactions 

among competing males during the breeding season and perhaps most interestingly from a 

conservation perspective (4) How important might these agonistic encounters be to density-

dependent regulation of population density. I observed hellbender mortalities coincident with the 

breeding season at one of my study sites during a nocturnal-breeding survey, and in another 

western North Carolina stream where freshwater mussels were being surveyed. 

During nocturnal surveys, 92% of detected individuals were observed with their heads 

protruding from beneath cover (in a few exceptions, another portion of their bodies were visible 

from shelter openings by searchers). Nocturnal observations suggest that hellbenders are able to 
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remain undetected by prey items such as crayfishes (Smith 1907; Netting 1929; Green 1935; 

Bishop 1941; Swanson 1948; Nickerson and Mays 1973; Peterson et al. 1989) and fishes 

(Swanson 1948, Yaun 2019) and/or predators by only exposing a small portion of their body i.e. 

their head. During the nocturnal-summer survey at Site 5, one hellbender was observed 

attempting, but failing, to eat a passing fish with only its head exposed from the shelter rock; this 

is a previously undocumented sit-and-wait feeding strategy. I was unable to distinguish whether 

individuals were males defending nest rocks (Smith 1907; Hillis and Bellis 1971), males or 

females attempting to ambush their prey, or both. Sheltering individuals rarely reacted to the 

presence of observers during nocturnal surveys with responses restricted to retreating slightly 

into shelters but were never observed fleeing. Humphries and Pauley (2000) observed 

individuals sheltering and feeding in a similar manner, however, their observations were made 

from above the water’s surface. Interestingly, during two early-summer nocturnal surveys (May 

1998), all individuals detected were encountered fully exposed on the stream bottom.  

In only a single case (Site 2), was I able to locate a hellbender sheltering beneath a 

boulder with its head protruding during a diurnal survey. Otherwise, all individuals were located 

after lifting boulders during diurnal surveys. In several instances, boulders where a hellbender 

was observed to be sheltering previously during nocturnal surveys were not found to be occupied 

during subsequent diurnal surveys, suggesting that individuals may not use the same shelters 

from day to day, at least during the summer. A nocturnal radio-telemetric study by Coatney 

(1982) revealed that monophasic activity in Ozark Hellbenders occurred in the first two hours of 

darkness in which a mean elliptical home range for males and females was 90.01 m2), although 

this was in August. At Site 1, two individuals located in the second transect were not detected 

during rock-lifting surveys just one day after the initial observation. However, during nocturnal-
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breeding surveys, two hellbenders were located in the same transect with their heads protruding 

from beneath the same shelter rocks. Interestingly, this was also the only time two individuals 

were observed sheltering together beneath the same rock; limited reports exist for this behavior 

(Smith 1907; Hillis and Bellis 1971; Nickerson and Mays 1973). During nocturnal-summer 

surveys in the Watauga River (Site 6), a single individual that was spotted at 22:34 through a 

narrow opening between two boulders. Only its leg was visible. After completing the survey 

(23:41), I returned to the marked rock and the hellbender’s head was now protruding from the 

opening. Although nocturnal activity does not always translate to exposure on the streambed, 

these observations may indicate that hellbenders are considerably more active nocturnally at the 

sites sampled during my study.  

Nocturnal surveys may also improve the effectiveness and accuracy of occupancy-model 

based surveys for hellbenders. My results suggest that nocturnal visual surveys could, despite 

their logistical challenges, provide a more efficient, low-impact method for assessing the current 

distribution and change in status of hellbenders. One potential drawback with nocturnal surveys 

is a lack of population demographic information (i.e. sex and a distinction between juvenile and 

adult age class) for sheltering hellbenders. Horchler (2010) was able to capture sheltering 

hellbenders using a crushed crayfish lure placed near the crevice of a shelter rock; I have not 

tested this myself however. Nocturnal surveys could be used to help managers target reaches for 

more time-intensive diurnal rock-lifting surveys to obtain demographic parameters (Keitzer et al. 

2013; Pugh et al. 2016). Because hellbenders did not react strongly to the presence of nocturnal 

observers in my study (possibly in an effort to reduce detection by a presumed predators- otters, 

water snakes, large turtles, native and non-native fishes, it may be possible to use images from a 

waterproof camera with a size standard in the image to estimate body size of sheltering animals 
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(Nickerson and Mays 1973; Kniest et al. 2010; Bendik et al. 2013; Browne et al. 2014; 

Nickerson et al. 2017). 

My study reveals that nocturnal searches using a timed, spatially-segregated approach 

supported by powerful dive-lights provide an efficient, non-invasive, albeit logistically 

challenging method for detecting hellbender populations. Future studies designed to assess 

changes in hellbender detectability and occupancy, especially those with limited resources, or 

studies in streams with small or declining populations may want to consider employing nocturnal 

surveys. Unfortunately, occupancy and detection models using pseudo-occupancy were not 

possible due to limitations in the quantity of occupied transects in my data; this prevented our 

models from converging. Finally, if hellbenders are listed range-wide as endangered species, 

nocturnal surveys may prove to be an effective way of assessing distribution and population sizes 

without risking substantial ‘take’ (defined by USFWS as ‘killing, removing, harassing or altering 

the habitat’) of a federally-protected species during monitoring (ESA 1973). 
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Tables and Figures 

 

 

Figure 1. Proportion of all hellbenders that were detected as either exposed on the 

streambed, or sheltering beneath bedrock or boulder substrates during diurnal and 

nocturnal surveys in summer (June-early August), and breeding season (late August-

September) periods in 2019. 
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Figure 2. Number of hellbenders detected during each survey during the 2019 survey 
season organized by field site, survey method, and season.  
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Figure 3. CPUE for surveys conducted during the 2019 survey season organized by field 
site, survey method, and season. 
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Figure 4. Comparison of hellbender detections across three survey methods in western North 

Carolina during 2019; error bars represent standard error. Number of animals detected did not 

vary with method (diurnal to nocturnal-summer: (Z = 37, df = 10, p = 0.08); nocturnal-summer to 

nocturnal breeding: (Z = 9, df = 7, p = 0.68).  
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Figure 5. Comparison of hellbender CPUE across three survey methods; error bars 

represent standard error. CPUE did vary with method (diurnal to nocturnal-summer: (paired t 

= -2.69, df = 9, p = 0.025); nocturnal-summer to nocturnal breeding (paired t = - 0.95, df = 7, p = 

0.37). 
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Figure 6. Boxplot of rock lengths (mm) under which hellbenders were located during 2019 

hellbender surveys.  
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Figure 7. Photo of a hellbender with its head exposed from under its shelter rock. 

91% of hellbenders were located by illuminating crevices in boulder and bedrock 

5substrate during summer and fall 2019 nocturnal surveys. Photo was taken at Site 11 

in the South Fork of the New River. 
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Table 1. Sites surveyed for Eastern Hellbenders during Diurnal-summer (D-S), Nocturnal-

summer (N-S), and Nocturnal-breeding (N-B) surveys in the New, Nolichucky and 

Watauga drainages during summer of 2019. 

 
Site Date Drainage Detections 

Time 
Searched 

(min) 
Searchers CPUE 

D-S 1 6/15 New 6 180 4 0.5 
 2 6/27 Nolichucky 3 102 4 0.4 
 3 6/28 Nolichucky 1 92 4 0.16 
 4 6/31 New 1 88 3 0.23 
 5 7/8 Watauga 2 147 2 0.41 
 6 7/15 Watauga 0 119 3 0.00 
 7 7/17 New 2 108 25 *0.04 
 8 7/22 Nolichucky 0 179 4 0.00 
 9 7/26 Watauga 11 167 4 0.99 
 10 8/7 New 5 161 4 0.47 
 11 8/10 New 1 235 3 0.09 

N-S 1 6/14 New 2 138 4 0.22 
 2 6/25 Nolichucky 4 99 4 0.61 
 3 6/26 Nolichucky 1 106 4 0.14 
 4 6/30 New 2 125 2 0.48 
 5 7/7 Watauga 8 101 4 1.19 
 6 7/10 Watauga 1 75 2 0.40 
 7 7/16 New 2 87 3 0.46 
 8 7/20 Nolichucky 2 111 4 0.27 
 9 7/24 Watauga 13 113 5 1.38 
 10 8/6 New 5 150 4 0.50 
 11 8/8 New 3 122 3 0.49 

N-B 1 8/23 New 2 94 5 0.26 
 2 8/26 Nolichucky 3 87 3 0.69 
 4 8/30 New 2 85 3 0.47 
 5 9/29 Watauga 6 114 4 0.79 
 6 9/1 Watauga 1 77 3 0.26 
 9 9/15 Watauga 22 121 5 2.18 
 10 9/7 New 4 109 4 0.55 
 11 9/22 New 7 123 3 1.14 
∗ CPUE was omitted from analysis.  
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Table 2. Morphometric and microhabitat data for each individual that was captured during 

surveys conducted in the summer and fall of 2019; HB # (order in which hellbender was detected), 

TL (total length), SVL (snout-vent length), WT (weight), TW (tail width), RL (rock length), RW 

(rock width), DNR (did not recover). Depth was taken at the top of shelter rock or at approximate 

location in which individual was first observed, flow was taken directly upstream of location detected. 

 
 

Site 
# 

Transect 
# 

HB 
# 

TL 
(cm) 

SVL 
(cm) 

WT 
(g) 

TW 
(mm) 

Depth 
(cm) 

Flow 
(m/s) 

RL 
(mm) 

RW 
(mm) 

N-S 1 2 1 - - - - 44 0 3100 1820 
 1 2 2 - - - - 44 0 3100 1820 
 2 3 1 - - - - 98 0.91 2000 1500 
 2 3 2 - - - - 119 0.85 2250 1650 
 2 8 3 - - - - 57 57 1600 1100 
 2 15 4 - - - - 36 36 850 450 
 3 6 1 - - - - 126 1.28 BR BR 
 4 5 1 - - - - 32 0.47 1250 1400 
 4 15 2 40 25 370 30.8 73 0.46 E E 
 5 3 1 0.65 40 - 4.7 41 0.11 42 30 
 5 7 2 - - - - 0 0.35 1300 1250 
 5 7 3 - - - - 30 0.46 1390 1000 
 5 7 4 - - - - 0 0.04 1290 860 
 5 8 5 - - - - 0 0.03 1350 820 
 5 10 6 - - - - 14 0.6 910 480 
 5 13 7 41 25 420 31 20 0.51 E E 
 5 14 8 - - - - 1 0.41 650 520 
 6 2 1 - - - - 0 0.09 950 590 
 7 6 1 - - - - 12 0.41 2000 1900 
 7 8 2 - - - - 16 0.27 BR BR 
 8 3 1 39 25 350 34 78 0.38 E E 
 8 5 2 - - - - 20 0.24 1600 1100 
 9 2 1 - - - - 35 0.29 1290 1280 
 9 2 2 - - - - 0 0.44 2700 900 
 9 3 3 - - - - 0 0.54 BR BR 

9 3 4 - - - - 0 0.05 2080 1190 
9 3 5 - - - - 61 0.17 560 1150 
9 4 6 - - - - 27 0.43 1340 630 
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9 5 7 - - - - 0 0.11 BR BR 
 9 7 8 - - - - 16 0 1820 1320 
 9 8 9 - - - - 22 0.14 2500 760 
 9 8 10 - - - - 43 0.75 BR BR 

9 8 11 - - - - 40 0.67 BR BR 
9 8 12 - - - - 20 0.13 BR BR 
9 10 13 - - - - 60 1.36 1440 480 
10 5 1 - - - - 52 0.35 1270 900 

 10 5 2 - - - - 54 0.4 960 910 

10 6 3 - - - - 90 0.6 BR BR 
 

10 11 4 - - - - 40 0.6 BR BR 
 

 10 13 5 - - - - 0 0.64 1590 920 
 11 2 1 - - - - 45 0.05 920 750 
 11 2 2 - - - - 7 0.14 870 800 
 11 3 3 - - - - 104 0.08 BR BR 

 
 Site 

# 
Transect 

# 
HB 
# 

TL 
(cm) 

SVL 
(cm) 

WT 
(g) 

TW 
(mm) 

Depth 
(cm) 

Flow 
(m/s) 

RL 
(mm) 

RW 
(mm) 

D-S 1 2 1 27 17 200 286 23 - - - 
 1 4 2 DN

 
DN

 
DN

 
DNR 41 - - - 

 1 9 3 53 36 1,0
 
 

37 45 - - - 
 1 9 4 41 25 540 348 50.5 - - - 
 1 9 5 52 32 1,0

 
 

47.2 70.1 - - - 
 1 10 6 30 30 645 41.3 64 - - - 
 2 3 1 44 29 570 45.3 113 1.03 1770 670 
 2 3 2 - - - - 119 0.85 2250 1650 
 2 15 3 44 29 410 34.4 5 - 1230 800 
 3 2 1 41.5 25 380 36 56 0.38 - - 
 4 9 1 51 32 810 45.2 65 0.4 1240 740 
 5 1 1 47 29 500 33 0 0.21 1190 590 
 5 8 2 - - - - 0 0 1220 1000 
 7 7 1 49 29.3

 
670 36.5 52 0.28 1780 840 

 7 10 2 24 17 90 24.4 62 0.32 950 550 
 9 1 1 47 28 520 38.7 - - 1160 610 
 9 4 2 - - - - - - 490 540 
 9 4 3 43 27 520 38.4 - - 690 530 
 9 5 4 45 25 400 32.2 - - 460 330 
 9 7 5 45 27 480 35.4 - - 910 750 
 9 9 6 38 32 330 35 - - 880 640 
 9 9 7 48 29 560 38.6 - - 970 760 
 9 9 8 53.5 31 720 43.7 - - 1220 630 
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 9 11 9 43 26 430 38.8 - - 1570 680 
 9 - 10 34 25 480 37.5 - - - - 
 9 15 11 43 26 520 37 - - 1200 640 
 10 5 1 54 32 820 41.9 60 0.55 930 - 
 10 8 2 - - - - 81 0.4 900 - 
 10 8 3 52.5 31.5 710 50.6 66 0.53 855 - 
 10 13 4 42.5 27 490 34.5 47 0.55 1270 - 
 10 14 5 46 28 570 34.8 30 0.83 1590 - 
 11 8 1 50 31 800 39.8 490 0.17 890 590 

 
 

Site 
# 

Transect 
# 

HB 
# 

TL 
(cm) 

SVL 
(cm) 

WT 
(g) 

TW 
(mm) 

Depth 
(cm) 

Flow 
(m/s) 

RL 
(mm) 

RW 
(mm) 

N-B 1 2 1 - - - - 18 0.84 3110 1820 
    1  2 2 - - - - 18 0.84 3110 1820 
 2 1 1 - - - - - 0.42 E E 
 2 2 2 - - - - - 0.32 2200 950 
 2 3 3 - - - - - 0.07 2150 2100 
 4 5 1 - - - - 35 - E E 
 4 7 2 - - - - 15 - 1000 535 
 6 3 1 - - - - 18 0.37 1070 900 
 10 6 1 - - - - 5 0.24 1600 1170 
 10 6 2 - - - - 87 0.19 1190 880 
 10 6 3 - - - - 51 0.35 1000 770 
 10 12 4 - - - - 38 0.28 1320 650 
 9 1 1 - - - - 30 0.17 E E 
 9 2 2 - - - - 0 0.01 2420 1580 
 9 5 3 - - - - 5 0.1 1500 1010 
 9 5 4 - - - - 19 0.02 1750 465 
 9 5 5 - - - - 19 0.02 2020 1390 
 9 6 6 - - - - 0 0.2 2085 1080 
 9 6 7 - - - - 0 0.09 2455 1330 
 9 7 8 - - - - 48 0.04 600 540 
 9 7 9 - - - - 30 0.13 1495 630 
 9 7 10 - - - - 43 0.2 1650 830 
 9 7 11 - - - - 40 0.06 600 420 
 9 7 12 - - - - 10 0.2 1135 1130 
 9 7 13 - - - - 18 0.04 930 635 
 9 8 14 - - - - 49 0.7 460 385 
 9 9 15 - - - - 39 0.17 E E 
 9 12 16 - - - - 41 0.2 170 110 
 9 12 17 - - - - 50 1.05 BR BR 
 9 12 18 - - - - 63 0.25 3075 2030 
 9 13 19 - - - - 58 0.13 490 690 
 9 13 20 - - - - 61 0.13 1070 560 
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 9 15 21 - - - - 84 0 1190 690 
 9 15 22 - - - - 48 0 810 735 
 11 2 1 - - - - 31 0.22 BR BR 
 11 2 2 - - - - 0 0.17 710 620 
 11 5 3 - - - - 33 0.23 730 600 
 11 6 4 - - - - 120 0.08 910 660 
 11 7 5 - - - - 47 0.56 BR BR 
 11 8 6 - - - - 49 0.09 250 170 
 11 9 7 - - - - 5 0.1 BR BR 
 5 1 1 - - - - 8 0.18 1320 1320 

5 1 2 - - - - 3 0 680 1600  
5 4 3 - - - - 14 0.18 BR BR  
5 4 4 - - - - 6 0.28 1550 1430  
5 6 5 - - - - 0 0.09 BR BR  

              5 12 6 - - - - 0 0.57 1130 575  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 

 

 

 

 

 



 

37 
 

Vita 

Freddy Junior Ortega was born in Foggy Bottom, Washington D.C. to Maripili Arce 

Ortega and Fredy Humberto Ortega in June of 1993. In 2013, he transferred to Appalachian State 

University to pursue a degree in Ecology, Evolution, and Environmental Studies and in 2016 he 

was awarded a bachelor of science. Freddy volunteered at the university Zoological collection 

transitioning into his role as a research technician in the Aquatic Conservation Research Lab, 

there he developed an interest in lotic systems and the herpetofauna of Western North Carolina. 

He began pursuing a Master’s Degree in August of 2018 and was awarded a Master of Science 

degree in August of 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


